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We discuss the astrophysical problem [i] of the motion of a charged particle in 
crossed fields. In contrast with previous treatments [2-5] we allow strong in- 

homogeneities of the magnetic field. 

i. Equations of Motion and an Adiabatic Invariant. In a number of physically interest- 
ing cases it can be assumed that a moving particle does not interact with a medium (plasma) 
in which currents are flowing. We denote the radius vector to the particle by r its mass 
by m, and its charge by e > 0; E and H are respectively the intensities of the electric and 
magnetic fields. The equation of motion has the form 

.. e ~__!_e 
r : = - - E  , r ' •  ( 1 . 1 )  

Ill, f~tC 

In the case under consideration E =:Ej, E = const > 0, H = Hz(x) k, Hz(x ) > 0, where i , 
i, k are unit vectors along the coordinates axes. The magnetic field is produced by currents 
along the y axis; the current density depends on x only. The cases e < 0, H z < 0 r etc., can 
be treated similarly. 

We denote characteristic values of the magnetic field intensity, the velocity component 
in the xy plane, and the Larmor frequency and radius respectively by [H], [v], % and R L. We 

introduce the dimensionless time %t, and the dimensionless coordinates x/R L and y/R L. Re- 
taining the previous notation for the dimensionless quantities, and projecting (i.i) onto the 
x and y axes, we obtain 

x"  = u ,  u"  = h ( x ) v ,  v" = e - -  h ( x ) u ,  ( 1 . 2 )  

where v = y'; ~= Ec/[v][H]; h(x) = Hz(x)/[H]. 

Motion along the z axis is uniform and of no further interest. 

As in [2-5] it is assumed that E<< I, but in contrast with those papers the function 
h(x) is not assumed slowly varying. 

We replace v by a new variable ~ = v + A(x), where dA/dx = h(x) and A(0) = 0o We obtain 
from (1.2) ~" = E and o = oo + T, where T = s(t -- to). The first two equalities of Eqso (1.2) 
take the form 

x"  = u ,  u"  = h ( x ) ( ( ~  - -  A ( x ) ) .  ( 1 . 3 )  

Equations (1.3) describe the uniform motion of an arbitrary particle in a force field 
which varies slowly with time and has the potential 

H = (1/2)((~ - -  A ( x ) )  2. 

The function A(x) is strictly monotonic, and therefore the phase trajectories of system 
(1.3) for o = const are closed. The motion of an arbitrary particle is vibrational with 
slowly varying amplitude, period, and position of the center. Except for small quantities, the 
center of vibrations x c is the root of the equation A(x c) = o; the amplitude is X2 -- x1~ 
where x:, x2, xl < x2 are roots of the equation (~ --A(x)) 2 = 2H, and H is the Hamiltonian of 
an arbitrary particle 
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i ((~--A H = ~-  u = + .~  (z))2. 

System (1.3) has the adiabatic invariant [6] 

x 2 

~ V 2 H  - -  (o - -  A(~))2d~. I (H, o) = 

x 1 

(1.4) 

(1.5) 

The integral in (1.5) and the one in (1.8) are evaluated for constants o and H; the 
quantities xl and x2 are functions of o and H. 

For t~to + T/E the quantity I is conserved, except for small quantities 0(~). This 
enables us to investigate the change of other dynamical characteristics of the particle. 
Such an investigation is performed later, since the invariant in the present problem is 
different from the familiar form in being "nonlocal." 

By solving the equation I = I (H, o) for H, we obtain the relation H = H (I, o) which 
determines the change in H in the first approximation in the form H(t:) -- H(to) = H(I, oi) -- 
H(I, oo). Expressing ~ = oH/oI in terms of I and o, we find the change in the period 2~/~, 
and from the relations given above, the evolution of Xc, xl, x=. 

Thus, the determination of the slow evolution is reduced to the inversion of (1.5) and 
not to the integration of the averaged equations, as is necessary when an adiabatic invariant 
is not known. 

Let us consider the projection Of the particle trajectory on 
ordinate of the particle is given by 

t 

Y = Yo q- .t' ((~ - -  A (x)) dt .  
t o 

the xy plane. The y co- 

(i .6) 

The function y(t) is the superposition of fast vibrations on a rapid, almost uniform 
motion. During a time of the order of i/e the particle is displaced a distance ~R L along the 
x axis, and a large distance ~RL/C along the y axis. Therefore the projection of the parti- 
cle trajectory on the xy plane is a spiral with the "axis" slightly inclined to the y axis. 
Since, in contrast with known problems, the velocity of the center of a turn along the y axis 
is sizable, the spiral will be elongated; its turns are far apart. 

It follows from (1.3) that 

H" = e(~ - -  A(x) )  = ev, H - -  Ho = e(y  - - Y o ) .  ( 1 . 7 )  

This expresses the obvious fact that the increase inthe kinetic energy of the particle 
is equal to the work done by the electrostatic forces. By using (1.7), which contains 
information on the function H, it is possible to obtain knowledge of the trajectory. 

It is reasonable to regard the point 

z = zo(~),  y = yo(~) = [~ff, ~) - Ho l/~ 

as the center of a turn. 

The relations A(x c) = o and x~ = e/h(x c) determine a slow displacement of the center in 
the positive direction of the x axis. The displacement along the y axis is determined by the 
change in H. Therefore the construction of the trajectory of the center of a turn is also 
reduced to the inversion of integral (1.5). 

The magnetic field intensity h(x) and the potential A(x) do not enter Eq. (1.5) directly. 
It might seem that the dynamical characteristics of the particle depend not only on the 
values of h(x) on the turn being considered, but also on the values of h(x) on the parts of 
the path already transversed by the particle. We show that this is not so. To do this we 
compare the motions of two particles in the fields which differ only in a certain interval 
[Xa, Xb]; i.e., we compare motions in the fields h(x) and h(x) + A(x), where A # 0 only for 
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x ~  [ x a ,  X b ] .  

S u p p o s e  b o t h  p a r t i c l e s  b e g i n  t o  move u n d e r  i d e n t i c a l  i n i t i a l  c o n d i t i o n s ~  and  do n o t  
enter the region x > x a during the first turns. Along these first turns the particle motions 
and the values of I will be identical. Along the turns where x > x a the potential A(x) for 
the second particle will be different from that for the first by the constant term 

xb 

AA --  .i A (~) d~. 
x~ 

We introduce a new argument t (2) = t --AA/e into Eqs. (1.3) for the second particle. As 
a result Eqs. (1.3) for the first particle in the variables x(1), u(I), t are the same as 
for the second particle in the variables x(2), u(2), t(=) (the superscript denotes the number 
of the particle). The values of I will also be identical for both particles. Consequently, 
except for small quantities, the dynamical characteristics of both particles for x > x b will 
be identical, i.e., H(I)(T) = H( 2)(T -- hA), ~(1)(T) = ~(2)(T -- AA), etc. The only difference 
will be in the transit times of the particles near the same point. 

We now analyze qualitatively the change in kinetic energy during the motion of a parti- 
cle. Suppose dh/dx > 0. Then 

~2 

~I (H, o) t ~ o - -  A (~) d~ = 

x 1 

2tl f h (A -1 ((1 @ 3/2"11 sin 0)) --  h (A -~ (cr --  "V2-H sin 0)) 

0 

i.e., for H = const the action I(H, o) decreases with time. But since I is conserved, the 
kinetic energy increases. Similarly, if dh/dx < 0 the kinetic energy decreases with time. 

2. Comparison with Problems of Motion in a Weakly Inhomogeneous Field. In this 
problem it is assumed [2-5] that R L ~ e[r], where [r] is the characteristic scale of vari- 
ation of the magnetic field. The problem considered above pertains to the case R L % [r]. 
We compare the solutions of these two problems in order to find how strong inhomogeneities 
of a magnetic field affect the motion of particles in this case. 

We consider first the problem of motion in a weakly inhomogeneous field which now has 
singularities as compared with [2-5]~ From the known [2-5] equations we obtain 

(l.S) 

p" = e p  c o s  ~I;, P" = - - e  s i n  ~r ~" = h(p)  - -  e c o s  C/p, (2.1) 

where p = cx; p = (u 2 + v2)I/=; cos $ = u/p; sin $ = --v/p. 

Averaging over $ leads to the trivial result that in the first approximation p and p 
are conserved for times ~i/e; therefore the conclusion that the known adiabatic invariant 
p2/h is conserved is also trivial~ These conclusions are insufficient, since it is necessary 
to trace the motion of a particle until h is not significantly changed, i.e., over distances 
~[r] for times ~i/c 2. 

In view of the above it is necessary to find solutions of Eqs. (2.1) in the second ap- 
proximation. We obtain the following equations for the drift components ~ and q of the 
functions p and p in the second approximation: 

d~ 8~ t , d ~ _  I ~dh/d~ 

These equations have the integral q2/h(~) = const. Hence it follows that p2/h is an 
adiabatic invariant. 

In the present case an adiabatic invariant of known form was obtained. However, this 
is not obvious a priori, since in a nondegenerate problem an adiabatic invariant is obtained 
from first order terms, and in a different way. The fact that the invariant is conserved for 
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times ~i/g 2 is also an important feature. A similar situation arises when vll= 0 during the 
whole time of motion [5]. 

We now compare the motions of two particles, one of which moves in a weakly inhomogene- 
ous field at all times, and tile other begins and ends its motion in the same regions of the 
field as the first particle, but with part of its path through a strong inhomogeneity. 
Suppose the particles begin their motions with the same initial conditions. At the start of 
the motion both particles have the invariant p2/h. This invariant is conserved for the first 
particle during the whole time of the motion. When the second particle enters the region of 
the strongly inhomogeneous field the quantity p=/h will not be conserved, but the invariant 
(1.5) will be conserved. But in the region of the weakly inhomogeneous field we have, except 
for small quantities, 

A(~)  = A(x~) + h(x~)(~ - -  xo), 

x 2 

i.e., the invariant (1.5) goes over into p2/h. Consequently, in entering the strongly in- 
homogeneous field the value of I will be determined by the value of p2/h in the weakly in- 
homogeneous field, and vice versa~ Since the second particle finally enters the same region 
of the weakly inhomogeneous field as the first particle, it will have the same value (initial) 
of the invariant p2/h. 

Consequently, the presence of jumps in the magnetic field intensity under the conditions 
considered does not affect the dynamical characteristics of the motion. In other words, in 
the cases considered there is no "superadiabatic" [i] acceleration of particles, i.e., 
larger than is observed when the adiabatic invariant p2/h is conserved. 
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